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Abstract
Pigment-based chemotaxonomy is a widely utilized tool to determine the biomass of phytoplankton classes

from pigment biomarkers. The CHEMTAX approach is sensitive to the initial estimates of pigment-to-
chlorophyll a (Chl a) ratios for the phytoplankton classes required, even though these are modified by the
CHEMTAX process. We present an alternative chemotaxonomic method that utilizes simulated annealing with
a steepest descent algorithm to derive class abundances and pigment-to-Chl a ratios. The simulated annealing
algorithm is tested on two synthetic datasets of Southern Ocean phytoplankton communities. Each dataset is
composed of 1000 inversion samples (set of phytoplankton class abundances, pigment ratios, and pigment pro-
files) with sizes ranging between 5 and 60 individual samples. We show that the new simulated annealing
approach displays higher accuracy than two common configurations of the CHEMTAX method, with lower dif-
ferences between true and estimated class abundances. Symmetric mean absolute percentage error were 4.8–
11%, compared to 18–70% with CHEMTAX approaches. Proportions of variance explained (R2) between true
and estimated class abundances using the simulated annealing approach were 0.98–0.99 compared to 0.71–0.89
for CHEMTAX. Overall, this new methodology is capable of determining phytoplankton class abundances at
higher accuracy than CHEMTAX without sensitivity to initial estimates of pigment-to-Chl a ratios.

Phytoplankton have high taxonomic diversity and a range
of cell sizes covering several orders of magnitude (Quigg
et al. 2003; Finkel et al. 2010; Estrada et al. 2016). Due to this
diversity and size range, the assessment of phytoplankton
community structure is not a trivial task (Kruk et al. 2011).
Marine phytoplankton are intrinsically linked to global bio-
geochemical cycles and ecosystem dynamics (Falkowski 1994;
Racault et al. 2012), yet the influence of phytoplankton as
climate-active elements varies significantly between functional
types, and so knowledge of the structure of phytoplankton
communities is crucial to understanding the implications of a

changing climate on marine ecosystems and the feedbacks
between them (Henley et al. 2020; Pinkerton et al. 2021).

Traditionally, optical microscopy with morphometric identi-
fication using the Utermöhl method has been used to estimate
the biomass of phytoplankton classes (Rott et al. 2007; Edler
and Elbrächter 2010). Taxonomic identification using light
microscopy provides high taxonomic resolution but it is typi-
cally limited to the larger size spectrum (> 5 μm), omitting clas-
sification of cryptic, smaller phytoplankton cells (Domingues
et al. 2008). Preservation of water samples for optical micros-
copy also introduces artifacts such as cell shrinkage or enlarge-
ment and losses that skew estimates of biovolume and biomass
(Menden-Deuer and Lessard 2000; Broglio et al. 2004; Zarauz
and Irigoien 2008; Jakobsen and Carstensen 2011). In addition,
with the requirement for extensive taxonomic training and rel-
atively long analysis time per sample, optical microscopy can-
not provide the sampling resolution required for assessing
community structure at large spatial scales.

To resolve the challenge of quantifying phytoplankton at the
class level (e.g., Cryptophyceae, Dinophyceae, Bacillariophyceae,
Cyanophyceae), chemotaxonomic analysis of pigment data is fre-
quently used to derive phytoplankton class abundances in mea-
sures of chlorophyll a (Chl a; Letelier et al. 1993; Mackey
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et al. 1996; Uitz et al. 2006; Latasa 2007; Van den Meersche
et al. 2008; Higgins et al. 2011; Kramer and Siegel 2019). Phyto-
plankton contain many pigments that either utilize light energy
for photosynthesis such as Chl a, and accessory or carotenoid
pigments that harvest light (e.g., fucoxanthin), or dissipate light
energy via photoprotective mechanisms (e.g., diadinoxanthin;
Bidigare and Ondrusek 1996; Brunet et al. 2011). In addition, the
pigment composition in a given class of phytoplankton varies
with both light and nutrient status, which adds further complex-
ity to phytoplankton classification, as pigment concentrations
and their respective pigment-to-Chl a ratios (hereby referred to
as “pigment ratios”) are dynamic and change with environmen-
tal conditions (Schlüter et al. 2000; Henriksen et al. 2002).

With the advent of advanced high-performance liquid
chromatography (HPLC) methods (Jeffrey 1997; Wright and
Jeffrey 2006), novel phytoplankton pigments have been discov-
ered, adding further power to chemotaxonomic identification
(Higgins et al. 2011). Higher resolution HPLC measurements
have also revealed that minor concentrations of many pigments
are present in major algal classes, leaving few previously classi-
fied markers truly unambiguous (Roy et al. 2011). This adds fur-
ther difficulty for chemotaxonomic approaches to delineate
phytoplankton classes with shared diagnostic pigments.

The most common approach to chemotaxonomic pigment
analysis has been the CHEMTAX program (see Mackey
et al. 1996). CHEMTAX performs nonnegative matrix factoriza-
tion to solve for phytoplankton class abundances based on HPLC
pigment measurements. Groups of samples are assumed to share
the same relative abundances of pigments in each phytoplankton
class. CHEMTAX uses a steepest descent algorithm tomodify each
initial estimate of pigment ratios until the error between esti-
mated and measured pigment concentrations is minimized, or an
iteration limit is reached. Total Chl a biomass is then partitioned
across the different phytoplankton classes. The CHEMTAX
approach is sensitive to the starting pigment ratios, and this sensi-
tivity to the initial guess can bias results (Latasa 2007; Pan et al.
2011; Swan et al. 2016). When tested on “synthetic” datasets
(i.e., data generated from statistical relationships to simulate field
measurements), pigment ratios frequently do not converge to
their true values, resulting in erroneous biomass of phytoplank-
ton classes (Latasa 2007). Furthermore, CHEMTAX v1.95 is run
on a graphical user interface which means that it is problematic
to apply at scale (to large datasets) and there have been no studies
of its behavior on large synthetic datasets (Swan et al. 2016).

As an alternative to CHEMTAX, a Bayesian Compositional
Estimator (BCE) has been developed that uses a Markov-Chain
Monte-Carlo (MCMC) algorithm to determine probability inter-
vals and point estimates for the biomass of phytoplankton clas-
ses (Van den Meersche et al. 2008). In their study, Van den
Meersche et al. showed a good agreement between phytoplank-
ton class abundances calculated by BCE and CHEMTAX. How-
ever, the BCE is computationally demanding and requires
either prior knowledge of probability distributions for phyto-
plankton pigment ratios, or extensive prior predictive

simulation for the Markov chain to converge. Due to the com-
plex nature and time constraints of MCMC algorithms, the
implementation of the BCE is typically limited to small sample
sizes (Higgins et al. 2011). Limited studies have used the BCE
for phytoplankton pigments alone, and the method has instead
been used more in conjunction with fatty acid biomarkers
(De Carvalho and Caramujo 2014; Strandberg et al. 2015).

To both increase the accuracy of estimating phytoplankton
class abundances and reduce the requirement for a priori
knowledge of pigment ratios, in this paper we explore alterna-
tive methodologies to CHEMTAX for partitioning Chl
a between phytoplankton classes based on measurements of
pigment concentrations. We use simulated annealing, a tool
used to find the global minima of a function when the func-
tion has many local minima (Press et al. 2007) and couple this
to a novel steepest descent algorithm.

We test the simulated annealing method alongside two
“standard” CHEMTAX configurations on large synthetic
datasets which were generated to span the scope of potential
pigment measurements in the Southern Ocean. Drivers of phy-
toplankton community structure in the Southern Ocean
include salinity, temperature, photosynthetically active irradi-
ance, mixing, nutrients and trace elements like iron (Bathmann
et al. 1997; Carter et al. 2008). Top-down controls such as mor-
tality due to grazers has been shown to have a large control on
chlorophyll biomass and the structure of phytoplankton com-
munities in the Southern Ocean (Arteaga et al. 2020). This
diversity leads to a great breadth of phytoplankton community
structures (Deppeler and Davidson 2017) and pigment compo-
sitions and makes the Southern Ocean an ideal candidate for
testing chemotaxonomic techniques.

The new methodology described in this paper will be avail-
able as a package phytoclass in the programming language R
(R Core Team 2022) for wider scrutiny and use.

Materials and procedures
Definitions and notation

In this paper, when we refer to a single sample this consists
of three parts: class abundances (c), pigment ratios (FTrue), and
pigment profiles (s). The matrix FTrue specifies the pigment-to-
Chl a ratios for each phytoplankton class; it is comprised of
m phytoplankton classes, n pigments, and has dimensions of
m (rows) by n (columns), written (m � n). We use the subscript
“True” here to distinguish FTrue from an estimate by an inver-
sion method (see below). The vector c is the abundance of each
phytoplankton class in units of Chl a biomass. The vector s is
the concentration of each pigment in a sample and attained
through matrix multiplication between and c and FTrue (Eq. 1).

s¼ cFTrue ð1Þ

We then consider a set of p samples which share a common
FTrue and are grouped together for inversion. Using matrix
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notation, CTrue (p � m) is the matrix of class abundances con-
sisting of p sets of c. Similarly, STrue (p � n) is the matrix of
pigment samples (p sets of s and n pigments). For example,
c and CTrue are constructed as:

c¼ ci,1,ci,2,…,ci,mCTrue ¼

c1,1 c1,2 … c1,m
c2,1 c2,2 … c2,m

..

. ..
. . .

. ..
.

cp,1 cp,2 … cp,m

2
66664

3
77775 ð2Þ

Through matrix multiplication between CTrue and FTrue, we
attain STrue (3). We call this set of CTrue, FTrue, and STrue an
“inversion sample.”

STrue ¼CTrueFTrue ð3Þ

STrue represents the data that would be produced via HPLC
analysis of a set of water samples collected in the field. Note
that each inversion sample (each row of STrue and CTrue) shares
the same FTrue. Inversion methods such as CHEMTAX are then
used to estimate CTrue and FTrue by inverting STrue. From the
inversion of STrue we attain FEst and CEst. Likewise, matrix mul-
tiplication between FEst and CEst produces SEst (Eq. 3).

Existing CHEMTAX methods
Given only STrue, the inversion problem (Eq. 3) for CEst and

FEst is highly underdetermined (fewer constraints than
unknowns in CEst and FEst). On the other hand, given STrue
and FTrue (or an initial estimate of FTrue), the inversion prob-
lem for CEst is overdetermined (i.e., the number of constraints
is greater than the number of free variables) so that an exact
solution is not (usually) possible and the “closest” solution of
CEst is found (see Eq. 4 for definition of “closest”).

The least-squares nonnegative matrix factorization
approach of Lawson and Henson (Lawson and Hanson 1995;
Eq. 4) is used by the original CHEMTAX method to solve the
overdetermined least square problems with inequality and
equality constraints.

minimize STrue�CEstk FEstk subject to CEst½ �≥0and
X

CEst½ � ¼1

ð4Þ

where jj jj is the Frobenius norm of the matrix operation. The
inequality constraint ensures that all rows and columns are
nonnegative values while the equality constraint ensures that
the sum of every matrix row is equal to 1. The root mean
square error (RMSE) between STrue and SEst (= CEstFEst) is calcu-
lated after every manipulation of FEst using Eq. 5.

ε¼ STrue�k SEstk ð5Þ

The CHEMTAX approach then iteratively varies FEst to
improve the fit between the SEst and STrue (Eq. 5), and this

process is repeated until a stable solution is reached (one
where no further changes to FEst and CEst lead to improve-
ments) or until an iteration limit is reached.

The original CHEMTAX program uses a steepest descent to
reduce the RMSE between STrue and SEst (Eq. 5). For each itera-
tion (k) of the steepest descent algorithm, every nonzero ele-
ment of FEst is varied by a specified amount called the “step-
ratio” (e.g., factor of 1/5). The error is then recalculated and
the element causing the largest improvement is selected, with
this repeated for all nonzero values in FEst. The element in FEst
that causes the largest decrease in error is retained, and the
process is repeated from the resulting FEst. This creates a series
of FEst (FEst(k) ! FEst(k + 1)) with corresponding CEst

(CEst(k) ! CEst(k + 1)). The steepest descent algorithm reduces
the size of the step after a number of iterations by increasing
the step ratio. This has the effect of decreasing how much the
element is varied as the iteration count increases, meaning the
step between FEst(k) and FEst(k + 1) becomes progressively
smaller.

Settings within CHEMTAX allow for the program to stop
after a predefined number of iterations, or if subsequent itera-
tions do not cause a reduction in error.

Prior to analysis, both the FEst and STrue matrices are nor-
malized to unit row sum and STrue is weighted as the recipro-
cal of its column means, bound at a maximum weight of 30.
This has the benefit of increasing the speed of inversion as all
values are brought to a similar scale, while also promoting the
accuracy in the derivation of pigments that have lower con-
centrations. A bounded weight at 30 ensures that pigments
with a minority concentration are not overweighted which
would result in the minority pigment concentrations being
prioritized over pigment concentrations that are naturally
higher.

CHEMTAX variants
There are two common and slightly different

implementations of CHEMTAX described by Latasa (2007)
and the CHEMTAX v1.95 release, 2017 (from here on
referred to as CHEMTAX-1 and CHEMTAX-2, respectively).
CHEMTAX-1 focuses on minimizing the sensitivity of
CHEMTAX to the starting FEst by increasing the iteration
limit to 5000, with a step size set to 25 and a step ratio set
at 2. Nine random (but reasonable) FEst values are selected
both exceeding and within values reported in the literature.
The nine FEst output from each run of CHEMTAX are then
used as the input for each subsequent run. This process is
repeated 10 times, with the aim of FEst converging to its
true values. After the 10th iteration, the final FEst are aver-
aged and STrue is inverted to obtain the final CEst.

To account for the sensitivity of initial starting values, the
CHEMTAX-2 approach selects an initial FEst from pigment
ratios in the literature. The literature-based FEst is then ran-
domized by a specified factor (0.7 is used in this study, as rec-
ommended by Wright, CHEMTAX 2017 release), to create
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60 separate FEst. The CHEMTAX algorithm is run for 200 itera-
tions on each FEst, using an initial step of 10, and a step ratio
of 1.3. From the 60 FEst, the six with the lowest error are then
averaged to produce the final FEst and CEst.

CHEMTAX in R
We wanted to explore the performance of CHEMTAX on a

large dataset (many inversion samples) but the latest CHEMTAX
software (v1.95) cannot be applied in a “batch method”
(processed automatically) to a large number of datasets (many
datasets with varying FTrue). We note that CHEMTAX v.1.0 was
built in MATLAB but is not publicly available. Hence, the
steepest descent algorithm was built in the programming
language “R” (henceforth called “R-CHEMTAX”), and the
CHEMTAX-1 and CHEMTAX-2 methods were reproduced using
R code (R Core Team 2022). We refer to these as R-CHEMTAX-1
and R-CHEMTAX-2, respectively. These R versions of CHEMTAX
can be applied efficiently to large datasets to explore their perfor-
mances, for example, on a synthetic set of test data. To improve
the speed of the matrix factorization, we implemented the
co-ordinate descent method of Franc et al. (2005) as an approxi-
mation to that used in the standard methods. Convergence times
for large or small matrices of the R methods were low because
they are generally sparse, and the solution is analytic.

As there is a randomized element to the CHEMTAX method,
identical datasets were inverted using the original CHEMTAX
method 20 times. Means and standard deviations were calcu-
lated from the output of 20 identical CHEMTAX and R-
CHEMTAX inversions. We validated R-CHEMTAX against the
CHEMTAX v1.95 release (Wright 2017) using regression analy-
sis on the mean FEst and CEst for each approach. We computed
the proportion of deviance explained (squared value of
Pearson’s correlation coefficient, R2) to test the fit between
each approach, and the F-statistic was calculated to determine
if the R-CHEMTAX method fits the CHEMTAX method better
than a model with no independent variables.

New optimization techniques
Two new optimization techniques for solving Eq. 4 as an

alternative to CHEMTAX were developed and tested. An over-
view of the methodology is given in Fig. 1.

Method 1: Alternating least squares
We used alternating least squares (ALS) to find the minima

of Eq. 4. Alternating least squares uses the output of the pri-
mary matrix factorization as an input for sequential factoriza-
tion (Comon et al. 2009). We first solved for CEst using Eq. 4;
then using CEst and STrue, we solved for FEst(k + 1) using Eq. 6.

FEst kþ1ð Þ¼ min
��� CT

EstCEst
� ��1

CT
EstSTrue

��� ð6Þ

With FEst(k + 1), we then solved for CEst(k + 1) using Eq. 4.
This alternating process continued for a set number of itera-
tions or until further iterations did not reduce the error.

Method 2: Steepest descent algorithm
A novel steepest descent algorithm (SDA) was built to esti-

mate FEst and CEst. All nonzero elements of FEst were random-
ized from a uniform distribution by a factor 5% above or
below their initial values; the randomization of the SDA is lim-
ited to � 5% as the tool is most effective at searching for a
local minima, close to its initial starting value. To decrease
convergence times, with each iteration of the SDA every ele-
ment that reduced error replaced the previous value in FEst.
This contrasts with the original CHEMTAX algorithm where
only one element in FEst is replaced after each iteration. If no
elements reduced the error, the factor was reduced to 3%, and
then to 1%.

To determine the effectiveness of the ALS and SDA for find-
ing a global minimum, the methods were tested on an inver-
sion sample of a synthetic dataset-1 (see “Synthetic Dataset-1”
section). Each method was applied for 3000 iterations and
implemented on random FEst, and an alternative FEst where
pigment ratios are randomized either side of their true values
(within a � 100% range). This process was repeated for six sep-
arate runs with different starting values for FEst.

Simulated annealing
Both the ALS and SDA were implemented within a simu-

lated annealing framework. Simulated annealing is commonly
used to find the global minimum of a function when the func-
tion has many local minima (Press et al. 2007). Given the sen-
sitivity of CHEMTAX to the starting value of FEst, our
hypothesis is that the solution space (Eq. 4) has a high num-
ber of local minima which makes the solution sensitive to the
starting values of FEst. The new method ranges across these
local minima to find the global minimum. This is achieved by
including a random jump from the current best estimate to a
new (random) starting position and then using ALS or SDA to
find the local minimum close to this new starting point. In
the simulated annealing approach, the size of the random
jump decreases over time following the analogy of a con-
trolled and gradual cooling of a metal into its lowest energy
state. To ensure that the simulated annealing algorithm does
not get stuck in a local minimum, at each iteration the algo-
rithm can accept a worse solution using a probability-based
acceptance criterion, allowing for the algorithm to “hill-climb”
from a local minima.

Prior to analysis, a preliminary check of the matrices condi-
tion number is carried out to determine if the matrix is well
conditioned (invertible), given the phytoplankton groups and
pigments selected for analysis. FEst, is perturbed 100, 000
times, and multiplied by the transpose of STrue, the condition

number (κ) is then calculated as κ¼ FST�� �� FST�1
��� ��� (Eq. 7). A

large condition number indicates that the matrix is singular,
meaning that one or more of the columns are close to being
linear combinations to the rest of the columns. When the
condition number is exceptionally large (say >1010), inversion
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of the matrix will be highly inaccurate and the method will
not proceed. In this case, the problem must be restated with
fewer groups.

To implement the simulated annealing algorithm, we
imposed a bounded uniform randomization to pigment ratios
in FEst, with limits set from 15% above and below values
reported in the literature.

First, FEst is randomized to give a candidate matrix, FC,
and its associated error (Eq. 5) calculated (εC). A new jump is
then considered by randomizing FC to produce a new candi-
date FEst (F0

C) and its associated error (ε0C). If the error of ε0C is
lower than εC, then the FC matrix is updated with the values
of F0

C. This process is repeated with the size of the jumps
decreasing with each iteration, so that F0

C stays closer and

closer to FC value (smaller and smaller random jumps). After a
specified number of iterations, the FC associated with the low-
est error is returned, and the final CEst is produced.

As in the standard CHEMTAX configurations, prior to anal-
ysis, both the FEst and STrue matrices were normalized to unit
row sum and STrue was weighted as the reciprocal of its col-
umn means, bound at a maximum weight of 30. To evaluate
the performance of the simulated annealing method, we used
an iteration length of 500 and a step of 0.009.

Synthetic dataset-1
To test the different chemotaxonomic approaches, we built

synthetic dataset-1, of Southern Ocean phytoplankton class
abundances and their associated pigment concentrations. Class

Fig. 1. Flow diagram depicting the various steps taken within the methodology of the present study, from the creation of synthetic datasets to the inver-
sion and analysis of phytoplankton class abundances with various methodologies. F signifies the phytoplankton pigment to Chl a ratio; S/s signify the
sample matrices/ vectors; and C/c signify the phytoplankton class abundances; and SErr represents phytoplankton pigment samples with added noise.
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abundances consist of m (= 7) different classes of phytoplankton,
namely: Synechococcus, prasinophytes, haptophyte-T3,
haptophyte-T4, dinoflagellates, diatoms, and cryptophytes. Pig-
ment profiles n (= 9) consist of: zeaxanthin (Zea), prasinoxanthin
(Pras), 190-butanoyloxyfucoxanthin (But), peridinin (Per), 190-
hexanoyloxyfucoxanthin (Hex), fucoxanthin (Fuco), alloxanthin
(Allox), Chl c3, Chl b, and Chl a. We generated values for CTrue

based on phytoplankton classes biomass from several literature
sources (Karl et al. 1991; Wright et al. 1996; Peeken 1997; Wright
and van den Enden 2000; Ishikawa et al. 2002; Hashihama
et al. 2008), and randomized from a log-normal distribution.
Similarly, pigment ratios for FTrue were selected by sampling from
a log-normal distribution, bounded by limits reported in the liter-
ature (Wright unpubl.—data release, 2017). The initial FTrue used
to build the synthetic dataset was based on the Southern Ocean
phytoplankton pigment ratios from Mackey et al. (Mackey
et al. 1996; Table 1). Variations of these pigment ratios have fre-
quently been used with the CHEMTAX program to derive class
abundances in the Southern Ocean and test the effectiveness of
different CHEMTAX configurations (Mackey et al. 1996; Wright
et al. 1996; Latasa 2007).

We generated 1000 synthetic inversion samples, with
varying FTrue, p, CTrue, and STrue. We sampled from a literature-
bound log-normal distribution to generate a set of FTrue
(Wright unpubl.—data release, 2017). For each inversion
sample, p was randomly selected as being between 5 and
60 with a uniform distribution. To create a set of synthetic
CTrue matrices with varying p, number of samples which share
a common FTrue, we sampled class abundances from
log-normal distributions based on literature values. A set of
synthetic STrue were then computed by matrix multiplication
between the FTrue and CTrue (Eq. 3). This synthetic dataset with
1000 inversion samples provides good coverage of the parame-
ter space but is not too large for testing.

Sensitivity Analysis
To test robustness to errors in STrue (e.g., from measurement

error), we conducted a sensitivity analysis by adding noise to
every inversion sample in our dataset. This was done by ran-
domizing each pigment concentration from a uniform

distribution with replacement, at specified levels above and
below the pigments’ true concentration (Eq. 7).

sErr i, jð Þ¼ sTrue i, jð ÞU �Z,þZð Þ ð7Þ

Here, s(i,j) is an element of S where i is the matrix row, and
j is the matrix column. U(min,max) signifies a uniform distri-
bution between min and max, and Z is the level of noise
added. This method ensured that noise was dispersed ran-
domly and evenly through each inversion sample. We created
six levels of noise, between 0% and 12%, with each level rep-
resenting a 2% increment. The 6000 inversion samples created
with added noise are termed SErr.

We applied the simulated annealing method to the syn-
thetic data (SErr) to estimate FTrue and CTrue with different
levels of noise. The performance of inversion methods was
then assessed by comparing the error between true and esti-
mated matrices (CTrue vs. CEst).

To further test the sensitivity of the method we created an
additional test to determine if the program can accurately esti-
mate a group with zero biomass. We systematically set the Chl
a of Synechococcus to zero for every inversion sample. Syn-
echococcus were chosen as they share the pigment zeaxanthin
with prasinophytes and are often, but not always, present in
the Southern Ocean.

To assess the sensitivity to phytoplankton groups with shared
pigment makers, we added a third haptophyte group to our syn-
thetic data (haptophyte-T8). In our dataset, the haptophyte-T8
group shares the same pigments as the haptophyte-T4 group,
alongside similar pigments to haptophyte-T3 and diatom-1. To
understand how the inversion process is affected by an addi-
tional haptophyte group, we compare the condition number of
the matrices, both with and without the addition of
haptophyte-T8.

Synthetic dataset-2 (increased complexity)
To further test the robustness of the chemotaxonomic

approaches, we built a second set of inversion samples “syn-
thetic dataset-2” from pigment ratios published in Wright
et al. (Wright et al. 2010; Table 2), which gave higher taxo-
nomic resolution (i.e., distinguishing between different

Table 1. Pigment-to-Chl a ratios used to formulate synthetic dataset-1 (Mackey et al. 1996; Latasa 2007).

Literatre pigment ratios (synthetic dataset-1)

Groups Chl c3 Per But Fuco Hex Pras Allox Zea Chl b Chl a

Prasinophytes 0 0 0 0 0 0.315 0 0.01 0.945 1

Dinoflagellates 0 1.062 0 0 0 0 0 0 0 1

Cryptophytes 0 0 0 0 0 0 0.228 0 0 1

Haptophyte-T3 0.046 0 0 0 1.703 0 0 0 0 1

Haptophyte-T4 0.047 0 0.246 0.585 0.538 0 0 0 0 1

Synechococcus 0 0 0 0 0 0 0 0.348 0 1

Diatoms 0 0 0 0.754 0 0 0 0 0 1
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subgroups of diatoms) including two classes for diatoms,
haptophytes, and green algae. These inversion samples reflect
high-latitude Antarctic waters, omitting phytoplankton classes
such as Synechococcus that are more commonly associated with
lower latitudes (Zwirglmaier et al. 2008). An increased number
of shared pigments is present between algal classes, which is
likely to make the inversion to phytoplankton classes more
ambiguous and we wanted to test this hypothesis.

To create 1000 new inversion samples, pigment ratios were
sampled from a log normal distribution. Bounds were set on
each pigment ratio from values reported in the literature,
including experimental results from the response of
Phaeocystis antarctica under high and low iron
(Fe) concentration (DiTullio et al. 2007). To generate CTrue,
standard deviations and means were obtained from Wright
et al. (2010) and sampled from a log-normal distribution, with
STrue then computed using Eq. 3.

R-CHEMTAX-1, R-CHEMTAX-2, and the simulated
annealing algorithm were tested by solving these complex
inversion samples.

Statistical analysis
To compare the effectiveness of each method, the bias, per-

cent bias, RMSE, R2, and symmetrical mean absolute percent-
age error (sMAPE; Armstrong 1985) were calculated between
all true and estimated matrices, for each chemotaxonomic
approach (Eqs. 8–10). Bias for each dataset was calculated by
taking the average of the difference between the estimated
and true values. The sMAPE was used in lieu of the MAPE; as
the MAPE places a higher penalty on negative errors.

Bias¼ 1
N

X
True�Estð Þ ð8Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
True�Estð Þ2

r
ð9Þ

sMAPE¼ 1
N

X jTrue�Estj
jTruejþ jEstjð Þ=2 ð10Þ

where “True” represents CTrue and FTrue, “Est” represents CEst

and FEst, and the sums are calculated over all N (values).

Assessment
Comparison between R-CHEMTAX and CHEMTAX

Due to the randomization of FEst, neither R-CHEMTAX,
nor CHEMTAX consistently produced the same means and
standard deviations, although they were similar (Supporting
Information Tables S3, S4). The R2 between the mean FEst

from each approach was 0.999 for CHEMTAX-1, and 0.997
for CHEMTAX-2 with RMSE of 0.007 and 0.0204,
respectively.

R-CHEMTAX and CHEMTAX produced very similar CEst

when using both approaches. The R2 was 0.999 for
R-CHEMTAX-1, with a RMSE of 0.44 mg Chl a m�3, and
an F-statistic of 8.2 � 105. For R-CHEMTAX-2, the R2 value
is 0.991 with a RMSE of 2.4 mg Chl a m�3, and an
F-statistic of 3.24 � 104 (Fig. 2). The R2 was high for each

Table 2. Pigment-to-Chl a ratios used to formulate synthetic dataset-2 (Wright et al. 2010).

Literatrure pigment ratios (synthetic dataset-2)

Chl c3 Chl c1 Per Fuco Neo Pras Violax Hex Allox Lut Chl b Chl a

Prasinophytes 0 0 0 0 0.07 0.09 0.049 0 0 0.0066 0.55 1

Chlorophytes 0 0 0 0 0.071 0 0.032 0 0 0.23 0.15 1

Cryptophytes 0 0 0 0 0 0 0 0 0.21 0 0 1

Diatoms-1 0 0.21 0 1.04 0 0 0 0 0 0 0 1

Diatoms-2 0.016 0 0 0.83 0 0 0 0 0 0 0 1

Dinoflagellates-1 0 0 0.82 0 0 0 0 0 0 0 0 1

Haptophyte-H 0.34 0 0 0.13 0 0 0 0.43 0 0 0 1

Haptophyte-L 0.13 0 0 0.01 0 0 0 1.21 0 0 0 1

Fig. 2. Regression analysis between class abundances derived from
CHEMTAX (1 and 2) and class abundances derived from R-CHEMTAX
(1 and 2) for synthetic dataset-1.
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Fig. 3. Convergence of pigment ratios for phytoplankton classes for an inversion sample in synthetic dataset-1 with six different runs. (a) Pigment ratio
convergence with the ALS method. (b) Pigment ratio convergence using the SDA method.
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approach; coupled with a low RMSE. This indicated that
the R versions of CHEMTAX replicate the original program
well. CHEMTAX-2 displayed a higher RMSE than
CHEMTAX-1. As the CHEMTAX-2 configuration has a

randomization component coupled with a short iteration
length, there is a greater likelihood that CEst will reach
slightly different minima, as the method is more sensitive
to the starting FEst.

Fig. 4. Pigment ratios that failed to converge for an inversion sample in synthetic dataset-1 with six different runs. (a) Pigment ratios determined from
the ALS algorithm. (b) Pigment ratios determined from the SDA method. The black arrows signify the true value of the pigment ratio.
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Optimization techniques
The ALS and SDA were analyzed independently of the sim-

ulated annealing method and tested on an inversion sample
from synthetic dataset-1. When starting from random FEst,
neither the ALS nor SDA methods were able to successfully
determine FTrue. However, both methods proved effective in
determining pigment ratios when the starting FEst were within
a � 100% range of their true values. This highlights that both
methods are suitable for finding local minima (Fig. 3).

Accurate values for pigment ratios were obtained for 8 of the
13 pigment markers for both approaches. Using the ALS
approach, convergence occurred within 1000 iterations. When
using the SDA, convergence typically occurred within the first
100 iterations, making it a more computationally effective tool
for finding the local minima, with computation times of � 0.3
of ALS (Fig. 3). For this reason, the subsequent analysis of
results focusses on the SDA method. Pigment markers that did
not converge to their true pigment-to-Chl a ratios belong to

Table 3. Summary statistics for pigments (STrue) in synthetic dataset-1 in units of mg m�3
.

Summary statistics for synthetic dataset-1 (mg m�3)

Pigment/summary Chl c3 Per Fuco Zea Pras But Hex Allox Chl b Chl a

Mean 0.018 0.034 0.541 0.009 0.042 0.074 0.299 0.006 0.125 1.134

SD 0.007 0.017 0.154 0.004 0.067 0.037 0.100 0.002 0.202 0.303

Median 0.016 0.030 0.520 0.008 0.021 0.066 0.283 0.006 0.064 1.087

Max 0.079 0.245 1.850 0.078 1.768 0.395 1.037 0.017 7.368 7.518

Min 0.004 0.003 0.149 0.001 0.000 0.008 0.086 0.002 0.001 0.420

Fig. 5. Distribution of error in pigment-to-chlorophyll ratios for synthetic dataset-1 using the R-CHEMTAX-1 (a), R-CHEMTAX-2 (b), and simulated
annealing + SDA (c) approaches. The gold diamond indicates the %bias for each class and the black vertical line is the median proportional error.
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the haptophyte-T4 class, which shares markers with the
haptophyte-T3 class/diatoms, and the prasinophyte class that
shares Zea with Synechococcus (Fig. 4).

Synthetic dataset-1 inversion analysis
Within synthetic dataset-1, concentrations of total Chl

a ranged between 0.4 and 7.4 mg m�3, with Hex and Fuco
being the most abundant pigments. For Fuco, a major pig-
ment shared between both haptophyte and diatom classes,
concentrations ranged between 0.149 and 1.85 mg m�3,
whereas for Hex, the primary diagnostic pigment for
haptophytes, concentrations ranged between 0.086 and
1.037 mg m�3. Other pigment concentrations average below
0.1 mg m�3, except for Chl b at 0.125 mg m�3 (Table 3).

Community biomass was typically co-dominated by
haptophyte-T4 and diatoms; biomass for Synechococcus,
cryptophytes, and dinoflagellates was low, with mean biomass
values for these classes < 0.1 mg Chl a m�3. To account for
occasional prasinophyte blooms in the Southern Ocean, their
biomass could vary up to 7 mg Chl a m�3, although < 1% of

prasinophyte samples had concentrations higher than 0.1 mg
Chl a m�3 (Karl et al. 1991; Peeken 1997; Litchman 2006).

R-CHEMTAX-1 typically resolved pigment ratios with
higher accuracy as median values for pigment ratios in the dia-
toms, haptophyte-T3, prasinophytes and dinoflagellates clas-
ses were within 10% of their true values (Fig. 5). Pigment
ratios that are shared between multiple classes were poorly
resolved by R-CHEMTAX-1, with median proportional errors
typically greater than 50%. Proportional error and bias associ-
ated with pigment ratios for the R-CHEMTAX-2 method were
frequently negative, showing that this approach tends to
underestimate pigment ratios. Cryptophytes, haptophyte-T3,
Synechococcus, and diatoms were underestimated by the
R-CHEMTAX-2 approach, whereas prasinophytes, haptophyte-
T4 and dinoflagellates pigment ratios were frequently over-
estimated (Fig. 4). Median proportional errors associated with
pigment ratios for CHEMTAX-2 were typically < 50%, with
the exception of Zea for prasinophytes and Allox for
cryptophytes.

Both the R-CHEMTAX-1 and R-CHEMTAX-2 approaches
show moderate to high R2 between CEst and CTrue for

Fig. 6. Distribution of proportional error for phytoplankton classes within synthetic dataset-1, using the R-CHEMTAX-1 (a), R-CHEMTAX-2 (b),
and simulated annealing + SDA (c) approaches. The gold diamond indicates the percent bias for each class and the black vertical line is the median
proportional error.
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phytoplankton classes of high biomass (Fig. 6). For example,
diatoms and haptophyte-T3 have R2 > 0.85 using
R-CHEMTAX-1 and > 0.65 for CHEMTAX-2. Low biomass clas-
ses, such as Synechococcus and cryptophytes, presented a chal-
lenge for both approaches, with R2 values between 0.4 and
0.72 for R-CHEMTAX-1 and no correlative relationships for
R-CHEMTAX-2 (Table 4). The sMAPE between true and esti-
mated phytoplankton classes ranged between 2.5% and 53%
for R-CHEMTAX-1, with the highest values for haptophyte-T4
and diatoms, whereas for the R-CHEMTAX-2 approach the
sMAPE ranged between 18% and 96%.

When using simulated annealing with the SDA, the R2

between estimated and true phytoplankton classes was greater
than 0.9, except for haptophyte-T3 (0.89). In addition, the
median proportional error for the Chl a assigned to each phy-
toplankton class was below 10%, indicating higher accuracy
than the CHEMTAX methods in resolving class abundances.
Eight of the 13 pigment ratios converged to their true values
(Fig. 5), and for those pigments and classes that did not (pig-
ments within haptophyte-T4 class, and Zea for prasinophytes),
median values of pigment ratios were within 15% of their true
values, indicating an improvement from R-CHEMTAX
methods.

The simulated annealing approach outperformed tradi-
tional chemotaxonomic methods at calculating phytoplank-
ton class abundances and resolving pigment ratios for classes
with shared pigment ratios. The R2 between CEst and CTrue is
0.99 with a RMSE of 0.024 mg Chl a m�3 and an sMAPE of
4.8%, over 222,465 data points (Fig. 7).

The sMAPE between CEst and CTrue increased by � 5% with
each noise increment added, indicating that the method was

sensitive to sampling error (Fig. 8). When sample size was low,
sMAPE was high; however, this stabilizes with a sample size of
12 for 0–2% noise added, a sample size of 20 for 4–6% noise
added and at larger sample sizes when > 6% noise was added.
This indicates that datasets with a larger number of samples
will be more resistant to noise introduced from measurement
or sampling error.

When the biomass of Synechococcus was set to zero, the sim-
ulated annealing approach worked well at resolving the bio-
mass for the class. As shown from Fig. 9, the distribution of
Synechococcus biomass was very low (median = 7.0 � 10�4 mg
Chl a m�3). Although the median biomass is not zero, it made
up a very minor proportion (usually < 0.001%) of total bio-
mass for all inversion samples.

The condition number for synthetic dataset-1 was very low
with a median value of 1663. As shown by Fig. 10, with the
addition of the haptophyte-T8 to synthetic dataset-1, the
matrix becomes singular (uninvertible), and the condition
number increases to 1.9 � 1016. When inverted, the sMAPE
associated with the class abundances increases from 5% to
95%. This indicates that multiple phytoplankton classes with
very similar pigment profiles cannot be used.

Synthetic dataset-2 inversion analysis
The median condition number for the more complex, syn-

thetic dataset-2 was 60,879 (see Supporting Information
Fig. S1). As synthetic dataset-2 has many groups that share
pigment markers, the condition number was higher than syn-
thetic dataset-1. Despite this, the condition number was sub-
stantially lower than when a third haptophyte subgroup was
added to synthetic dataset-1 (i.e., 1.9 � 1016).

Table 4. Summary statistics for the performance of inversion methods to deriving class abundances in synthetic dataset-1.

Inversion analysis summary statistics for class abundances in synthetic dataset-1

Metric Prasinophytes Dinoflagellates Cryptophytes Haptophyte-T3 Haptophyte-T4 Synechococcus Diatoms Total

Sample size 31,779 31,779 31,779 31,779 31,779 31,779 31,779 222,465

R-CHEMTAX-1

R2 1.000 0.972 0.402 0.867 0.792 0.716 0.852 0.898

%Bias 2.715 0.270 �6.154 �3.922 �40.850 �6.941 26.399 �4.069

RMSE 0.005 0.003 0.006 0.017 0.141 0.005 0.143 0.076

sMAPE (%) 2.5 3.1 14.6 16.1 53.0 16.7 22.0 18.0

R-CHEMTAX-2

R2 0.988 0.601 0.039 0.663 0.849 0.043 0.789 0.894

%Bias �1.378 28.305 �76.431 �16.230 36.849 �51.848 �15.377 �13.730

RMSE 0.032 0.024 0.023 0.048 0.133 0.023 0.111 0.071

SMAPE 17.5 60.5 78.0 41.7 38.2 96.0 18.0 70.0

Simulated annealing

R2 1.000 1.000 0.988 0.884 0.930 0.961 0.955 0.987

%Bias �0.041 �0.004 0.058 8.027 4.581 0.531 �4.293 1.265

RMSE 0.002 0.000 0.001 0.017 0.043 0.002 0.042 0.024

sMAPE (%) < 1 < 1 < 1 12.6 10.1 3.5 6.7 4.7

231

Hayward et al. phytoclass: pigment based chemotaxonomic method

 15415856, 2023, 4, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lom

3.10541 by M
inistry O

f H
ealth, W

iley O
nline L

ibrary on [23/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



For synthetic dataset-2, biomass ranged from moderate
(0.56 mg Chl a m�3), to high, typical of eutrophic conditions
(� 5 mg Chl a m�3). Mean values for biomass represented

Antarctic coastal waters with a value of 1.13 mg Chl a m�3.
Concentrations for Fuco ranged between 0.057 and
3.87 mg m�3, with an average value of 0.51 mg m�3, whereas

Fig. 7. Density plot of true class abundances and predicted class abundances for R-CHEMTAX-1, R-CHEMTAX-2, and simulated annealing + SDA
approaches in synthetic dataset-1.

Fig. 8. The sMAPE for class abundances for varying levels of error addition for different sample sizes, tested on synthetic dataset-1. Er0 indicated the
sMAPE with no additional noise, whereas Er1 is 2% added error, Er2 is 4% added error, Err3 is 6% added error, Err4 is 8% added error, Err5 is 10% added
error, and Er6 is 12% added error. The shading indicates the standard error around the mean value for each number in inversion sample.
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Hex concentrations ranged between 0.021 and 2.06 mg m�3

(Table 5). The remaining pigment concentrations were low,
with mean concentrations < 0.1 mg m�3.

When using R-CHEMTAX-1 and R-CHEMTAX-2, pigment
ratios generally did not converge to their true values (Fig. 11).
Compared to synthetic dataset-1, a higher proportion of pig-
ment ratios did not converge when the pigment was shared
between multiple phytoplankton classes. Similar to synthetic

dataset-1, pigment ratios for the cryptophyte and dinoflagel-
late classes were well resolved by R-CHEMTAX-1 as these clas-
ses have the unambiguous marker pigments Per and Allox.
Although proportional error for pigment ratios can be high
using these approaches, it is important to note that true pig-
ment ratios can be small for many phytoplankton classes
(i.e., Chl c3 for diatom-1, mean = 0.016). A small absolute
deviation from the true value then causes a large increase in
the proportional error.

For synthetic dataset-2, neither the R-CHEMTAX-1 or
R-CHEMTAX-2 approaches successfully resolved class abun-
dances for the green algae lineages (R2 < 0.26; Table 5). Propor-
tional error for classes with low biomass such as diatom-1 was
high, with a maximum of 202% for R-CHEMTAX-1 and 558%
for CHEMTAX-2, indicating difficulty in delineating diatom
classes that share common pigments. Similarly, both
approaches struggled to distinguish between the green algae
classes, with an overestimation of chlorophytes and underesti-
mation of prasinophytes. Phytoplankton classes with unambig-
uous pigment markers are better represented by R-
CHEMTAX-1, with median class abundances within 10% of
their true values (Fig. 12). The sMAPE value between CEst and
CTrue was 49% for R-CHEMTAX-1 and 63% for R-CHEMTAX-2.
These higher sMAPE values compared to those in synthetic
dataset-1 indicate that the CHEMTAX methods struggled to
resolve the more complex inversion samples in synthetic
dataset-2 (Table 6).

Simulated annealing was effective at resolving phyto-
plankton class abundances for synthetic dataset-2. Propor-
tional errors associated with both haptophyte classes were
low, with median errors < 10%. The proportional error for

Fig. 9. The median biomass for Synechococcus for each inversion sample,
when the real biomass value is zero.

Fig. 10. The distribution of condition numbers for 100,000 perturbations using synthetic dataset-1. (a) Without the addition of the haptophyte-T8
group. (b) With the inclusion of the haptophyte-T8 group.
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the diatom-1 class was the largest, with an overestimation
of 34%. As median biomass was 0.026 mg Chl a m�3 for
the diatom-1 class, an error of 34% equates to a deviation
of only 0.009 mg Chl a m�3 and so the absolute error was

low. Green algae classes were well represented by the sim-
ulated annealing approach, prasinophytes converged to
their true values, and chlorophytes displayed a slight
underestimation.

Table 5. Summary statistics for pigments (STrue) in synthetic dataset-2 in units of mg m�3
.

Summary statistics for synthetic dataset-2 (mg �3)

Pigment/summary Chl c3 Chl c1 Per Fuco Neo Pras Violax Hex Allox Lut Chl b Chl a

Mean 0.160 0.013 0.011 0.513 0.003 0.004 0.002 0.420 0.031 0.001 0.024 1.406

SD 0.135 0.013 0.007 0.402 0.001 0.001 0.000 0.375 0.013 0.001 0.005 0.346

Median 0.112 0.006 0.009 0.323 0.003 0.004 0.002 0.340 0.028 0.001 0.024 1.360

Min 0.013 0.000 0.001 0.057 0.002 0.002 0.001 0.021 0.005 0.000 0.010 0.564

Max 0.908 0.107 0.081 3.874 0.007 0.010 0.005 2.060 0.165 0.007 0.048 4.988

Fig. 11. Distribution of proportional error for phytoplankton pigment ratios within synthetic dataset-2, using the R-CHEMTAX-1 (a), R-CHEMTAX-2 (b),
and simulated annealing + SDA (c) approaches. The gold diamond indicates the percent bias for each class and the black vertical line is the median pro-
portional error.
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Fig. 12. Distribution of proportional error for phytoplankton classes within synthetic dataset-2, using R-CHEMTAX-1 (a), R-CHEMTAX-2 (b), and simu-
lated annealing + SDA (c) approaches. The gold diamond indicates the percent bias for each class and the black vertical line is the median proportional
error.

Table 6. Summary statistics for the performance of inversion methods at deriving class abundances in synthetic dataset-2.

Inversion analysis summary statistics for class abundances in synthetic dataset-2

Prasinophyte Chlorophyte Cryptophyte Diatom-1 Diatom-2 Dinoflagellates Haptophyte-H Haptophyte-L Total

Sample size 31,814 31,814 31,814 31,814 31,814 31,814 31,814 31,814 254,526

R-CHEMTAX-1

R2 0.253 0.046 0.950 0.774 0.897 0.756 0.782 0.931 0.711

%Bias �30.629 185.554 3.388 202.792 �14.700 1.213 �42.996 61.724 45.793

RMSE 0.016 0.012 0.012 0.216 0.214 0.004 0.248 0.235 0.162

sMAPE (%) 38.6 79.7 5.0 90.5 41.0 14.5 74.0 46.0 48.0

R-CHEMTAX-2

R2 0.250 0.038 0.766 0.837 0.946 0.682 0.819 0.919 0.717

%Bias �34.121 168.587 �24.945 558.141 �40.879 63.047 9.409 54.500 94.217

RMSE 0.018 0.013 0.042 0.211 0.220 0.012 0.231 0.229 0.158

sMAPE (%) 44.0 94.0 31.0 132.0 58.0 45.0 51.0 42.0 63.0

Simulated annealing

R2 0.973 0.965 1.000 0.924 0.996 0.999 0.966 0.962 0.977

%Bias �0.744 �13.732 0.028 34.014 4.681 0.022 �9.335 14.520 3.868

RMSE 1.1 E-03 5.8 E-04 6.3 E-04 0.034 0.039 2.5 E-04 0.088 0.077 0.045

sMAPE (%) 1.2 17.0 < 1 28.6 11.0 < 1 15.7 16.0 11.2
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The R2 between CEst and CTrue was 0.98 for synthetic
dataset-2; however, the RMSE and sMAPE were marginally
higher than the previous synthetic dataset at 0.045 mg
Chl a m�3 and 11%, respectively (Table 6). This is unsur-
prising given the larger condition number for synthetic
dataset-2. The accuracy of simulated annealing at estimat-
ing CTrue and FTrue for synthetic dataset-2 show a marked
improvement from the CHEMTAX method, which had R2

values that ranged between 0.71 and 0.72, RMSE values of
0.148–0.162 mg Chl a m�3 and sMAPE values of 48–63%
(Fig. 13; Table 6).

Discussion
Although there will likely be differences between

R-CHEMTAX and CHEMTAX, our results show that
R-CHEMTAX replicates CHEMTAX v1.95 very closely,
suggesting that it was a suitable proxy to use in-place of
the CHEMTAX graphical user interface. The creation of
R-CHEMTAX provided the capability for us to test the algo-
rithm on many inversion samples without the requirement of
manual data input.

When analyzing different optimization techniques, we
found that the SDA was more effective, with faster conver-
gence times and more accurate results for “unconverged”

pigments (did not reach true solution), than ALS. Extending
the iteration count for both the ALS and SDA did not improve
estimates for the pigments that did not converge; after a local
minimum was determined, pigments would remain static for
the remaining iterations (Fig. 4). Pigments that failed to con-
verge shared three characteristics: they belonged to the same
algal class, the algal class shared pigments with another class,
and either the pigment ratio or pigment concentration was
low. Pigments that did not converge to their true ratios were
attributed to the haptophyte-T4 class that share marker pig-
ments with haptophyte-T3, and diatoms (Fig. 4). For the SDA,
pigment ratios for the haptophyte-T4 class either converged at
the wrong values (i.e., Chl c3), or at values close to their true
ratios such as Fuco (Fig. 4). The pigment Zea did not converge
to its true values for the prasinophyte class; this pigment was
shared with Synechococcus and is a minority pigment for most
prasinophytes, with a true pigment ratio of 0.01 in the
synthetic datasets used here.

The simulated annealing algorithm was effective at finding
global minima with no sensitivity to initial estimates of phy-
toplankton pigment ratios. Simulated annealing displayed a
marked increase in accuracy when compared to the R-
CHEMTAX methods, suggesting that it is better suited to
determine phytoplankton class abundances from pigment
data than R-CHEMTAX. Increased accuracy in deriving class

Fig. 13. Density plots of true class abundances and predicted class abundances for R-CHEMTAX-1, R-CHEMTAX-2, and simulated annealing + SDA
approaches using synthetic datasets in synthetic dataset-2.
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abundances coupled with the higher accuracy between phyto-
plankton subgroups will provide better quantification and
parameterization of phytoplankton class abundances for bio-
geochemical models and will aid in further understanding bio-
geochemical cycles, and ecosystem functions.

Synthetic datasets proved to be a useful tool for testing dif-
ferent chemotaxonomic methods. Literature values for pig-
ment ratios and biomass distributions were used to mimic a
natural phytoplankton community from field samples, while
accounting for some of the variance between pigments for
phytoplankton classes (Zapata et al. 2004). We, however, note
that our synthetic datasets do not consider all correlations
between different classes; that is, ratios are likely to be corre-
lated due to a particular set of environmental conditions.
Cross-correlation between pigment ratios and class abun-
dances would reduce variation in the synthetic datasets
because only a subset of the random combinations is possible.
Hence, our synthetic datasets likely represent a harder test of
the inversion methods than a more realistic dataset that
includes co-variance between pigment ratios.

The biomass of cryptophytes and dinoflagellates are typi-
cally low in synthetic dataset-1 though we recognize that they
can be an important component of the Southern Ocean phy-
toplankton community (Garibotti et al. 2005; McLeod
et al. 2012). Despite the low biomass of these classes, accuracy
between CTrue and CEst for these classes were high when using
simulated annealing due to their unique pigment markers (
Allox and Per). We recognize that dinoflagellates present a
challenge in chemotaxonomic analysis as they include groups
that both include and lack Per, contain pigments commonly
associated with haptophyte/diatom classes, and/or utilize pho-
tosynthetic apparatus of other phytoplankton classes via
kleptoplasty (Tangen and Björnland 1981; Gast et al. 2007;
Kang 2010). Dinoflagellates represented in this dataset are
only those that contain Per so that further testing of the effect
of dinoflagellates should be further considered in the future.

The condition number of the matrices indicates if a feasi-
ble solution is available given the phytoplankton groups
and pigments selected. By adding a third haptophyte sub-
group to synthetic dataset-1, we show that when classes
share very similar pigment profiles and are together in the
same analysis, the inversion becomes singular (non-
invertible). We suggest that the user of phytoclass avoids
selecting many classes (or subgroups) of phytoplankton
with overlapping pigment profiles. The user should make
an assessment on their choice of groups/pigments based on
the condition number associated with their selection. Prior
to analysis, a high condition number will be flagged to the
user, and the program will abort if the number is very large.
If the condition number of the given FEst and STrue is large,
the user should reevaluate the selection of phytoplankton
groups in FEst. Due to potential co-linearity between matrix
columns, we advise that pigment inversion methods should
only be used to determine the biomass of phytoplankton

classes at coarse resolution, without the selection of many
subgroups.

Both synthetic datasets omit the presence of pelagophytes,
a phytoplankton class that is common in water samples col-
lected in the Southern Ocean (Schlüter et al. 2011). Thus, if
pelagophytes were present within a water sample but omitted
from the chemotaxonomic analysis, their biomass would be
misallocated to another phytoplankton class that share a simi-
lar pigment profile. The inversion of synthetic data was
approached with the advantage of knowing what algal classes
were present. When encountering field-based pigment sam-
ples, the phytoplankton classes present will not always be
known, and it is important to scientists to consult the litera-
ture on the biogeography of phytoplankton classes expected
within their water sample, and base their selection on the
presence or absence of certain pigment markers (e.g., only
including Synechococcus if Zea is present). If in doubt, ambigu-
ous phytoplankton classes should be included. Inspection of
the condition number test will reveal if the problem has
become noninvertible (excessively ambiguous) when it will be
necessary to reduce the classes.

When following the R-CHEMTAX-1 method, multiple itera-
tions would cause unambiguous pigment ratios to converge to
their true values when starting from random points. However,
initial pigment ratios too distant from their true values would
remain in local minima outside the reasonable solution space
and skew the final estimates. The R-CHEMTAX-2 approach
would cause pigment ratios to converge to a local minima
close to their initial ratios, indicating that this approach was
more sensitive than R-CHEMTAX-1 to the initial ratios used.
To overcome this sensitivity, the approach starts from
60 unique FEst, based on literature values; however, if the solu-
tion space has many local minima, 60 random matrices may
not be sufficient to cover the feasible solution space.

R-CHEMTAX methods were not able to determine the cor-
rect abundances or pigment ratios for low biomass classes such
as Synechococcus and cryptophytes for synthetic dataset-1, or
the green algae classes for synthetic dataset-2. This indicates a
natural bias within R-CHEMTAX to resolve phytoplankton
classes with higher biomass more accurately. We have dis-
cussed two common configurations to using R-CHEMTAX; it
is important to highlight that CHEMTAX v1.95 has many set-
tings, and adjustment of these will affect the derivation of CEst

and FEst.
Simulated annealing performed well at resolving phyto-

plankton biomass, with overall accuracy ranging between
89% and 95%. Although the more complex synthetic
dataset-2 had not performed as well as synthetic dataset-1,
it showed the greatest improvement from the R-CHEMTAX
methods at delineating phytoplankton classes with shared
pigment biomarkers. This was demonstrated by increased
accuracy at resolving haptophyte classes partitioned by
their Fe preference when compared to the R-CHEMTAX
methods.
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We note that the relative errors associated with pigment ratios
are frequently higher than the error associated with the deriva-
tion of phytoplankton class abundances (Figs. 5, 6, 11, 12).
Exceptions to this rule do however occur and are exampled in
synthetic dataset-2 (R-CHEMTAX approaches) where the relative
error for the abundances of diatoms-1 are higher than their dom-
inant marker pigment, Fuco. This likely occurred as in this
dataset, Fuco is divided between four phytoplankton classes, and
error associated with the Fuco in any of these classes will com-
pound and affect the accuracy in estimates of class abundances
that share the pigment.

The addition of noise in SErr widened the gap between CTrue

and CEst, and the sMAPE between each noise level would typi-
cally increase by � 5%. This highlights the importance of
accurately sampling and analyzing phytoplankton pigments
through HPLC laboratory protocols. Uncertainty for HPLC
methods is typically low for both instrument calibration and
the preparation of samples but can be higher for replicate sam-
ples (Tomi�c et al. 2012). As error was greatest at a lower sample
size, we recommend sample sizes of at least 12 samples when
using the simulated annealing approach, whereas if higher
uncertainty is expected, we recommend a sample size of
20 similar samples, and at the very minimum a sample size of
12. Higher sample size will typically offer more leverage to
accurately determine class abundances, especially if high
uncertainty is anticipated with sampling or analytical
procedures.

As pigment ratios change with environmental conditions,
such as light levels or nutrient regimes (Schlüter et al. 2000;
Henriksen et al. 2002), pigment samples should be clustered
prior to analysis to ensure that all samples within STrue will
share similar values for FTrue. Following the work of Nunes
et al. (2018) and Vaillancourt et al. (2018), we recommend
data are always clustered based on environmental conditions
or through established hierarchal clustering methods (such
as the Ward method; Punj and Stewart 1983) on pigment
concentrations that have been normalized to Chl a and
transformed using the Box–Cox method (Murtagh and
Legendre 2014). Samples collected from the field will have
varying pigment ratios, as such, prior to inversion we
strongly emphasize the importance of correctly clustering
samples so that during inversion, samples with similar pig-
ment ratios will be analyzed together. Further testing of clus-
tering methods in large datasets where pigment ratios differ
greatly is required.

The effectiveness of the simulated annealing algorithm is
dependent upon the iteration limit and step used. With a step
of 0.009 and a liberal iteration limit of 500, pigment ratios
would converge to, or close to their true values. Convergence
may occur at lower (or higher) iteration limits; this will, how-
ever, depend upon the complexity of the dataset and pigment
concentrations used. If the RMSE associated with the inver-
sion is > 0.1, we suggest that the user increases both the step

and iteration limit of the annealing algorithm, or recluster
their data. The minimum and maximum values for the simu-
lated annealing randomization were 15% greater than those
reported in the literature to account for environmental condi-
tions that may alter the pigment ratios to value lower or
higher than those reported in the literature. Although this is a
reasonable range, it will not cover outliers created by extreme
environmental conditions that would favor the synthesis of
accessory pigments over Chl a, thereby increasing pigment-to-
Chl a ratios.

This paper will be followed by an open-source R package
phytoclass that implements the simulated annealing technique
discussed. We have implemented the flexibility for the user to
predefine maximum and minimum values for pigment ratios,
alongside iteration limits and numerous other setting within
the phytoclass package while also providing default values. We
anticipate that with global open-source pigment data available
(Peloquin et al. 2013), the phytoclass program will prove to be
a useful tool for the validation of biogeochemical modeling
exercises. As phytoclass is built within the programming lan-
guage “R,” it can easily be implemented into the workflow of
remote sensing scientists, modelers, and field ecologists. We
are interested to see how chemotaxonomic approaches such
as phytoclass perform with freshwater ecosystems, the sea ice
microbial community (Pinkerton and Hayward 2021), and
with different biomarkers such as lipid concentrations or
phycobiliproteins.
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